Fourdrinier Retention Mechanisms - Technical Papermaking

Mechanisms of retention/ drainage

Retention aids traditionally based on Alum, Alum neutralizes the charge of the paper making furnishes and was seen a "fix all" regarding wet end chemistry problems. 

Modern Retention aids based on PEI single polymers used "bridging" as the dominant mechanism for retention. the first type of polymers were of high molecular weight which brougfht fibers and filler together and formed "bridges". Nowa days new micro particle systems follow a complex flocculation system to improve wire retention.

What is of interest are the flocculation properties of polymers (retention aids) because many components of the stock furnish (sludge, fillers, fines etc) are too small to be mechanically retained on the wire and need to be bound to the larger fibers through flocculation. The ideal scenario would be to restrict fiber to fiber flocculation and encourage the smaller particles and additives to flock to the fibers. This would give the best retention and dewatering of the sheet.

Bellow is a table that describes the elements of papermaking that will affect the retention on a fourdrinier machine, they can be catagorised into, Pulp conditions, Wire conditions and the additives added to the stock/ furnish

Stock Factors
Conditions of Wire
Additives
pH
Sheet grammage
Types and amounts of fillers
Consistency
Sheet formation
Shape and density of mineral particles
Temperature
Fabric characteristics
Types and amounts of other additives
Fiber characteristics
Type of dewatering elements
Order of addition
Degree of system closure
Machine speed
Ionic balance

Shake (if used) – old technique used on high quality paper machines
Level of anionic trash

Improving retention on the wire has many benifits, primarly cost. Papermachines producing News print have a retention of about 50%, increasing this retention to 55% for example will reduce the amount of primary stock needed to an extra 45%. for example at a retention of 50% producing 25t/hr throughput the mass of stock through the headbox needs to be 50t/hr, by increasing the retention to 55% the mass through the head box is reduced to 45T/hr


No comments:

Post a Comment